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SUMMARY

The problem considered is that of obtaining generalized inverses and
ranks of matrices of the form R+ STU (in terms of generalized inverses
of R and various other matrices or in terms of the ranks of these matrices).
It is found that generalized inverses of R+ STU can be obtained as
submatrices of generalized inverses of the partitioned matrix

R -ST
(8 )
and that rank(R + STU) = rank(C) — rank(T). These results are used to
translate various formulas for generalized inverses and ranks of partitioned
matrices into formulas for generalized inverses of R+STU and for
rank(R + STU). The formulas for generalized inverses of R + STU can be

regarded as generalizations of Woodbury’s formula (which is for an ordinary
inverse).

Key words : Woodbury’s formula, Matrix sum, Partitioned matrix, Recursive
estimation. :

1. [Introduction

Let R represent an n X q matrix, S an n X m matrix, T an mXxp matrix,
and U a p x q matrix, and consider the modified matrix R + STU obtained by
adding to R the product STU.

In the special case where R and T are nonsingular, it is well-known that
R+ STU is nonsingular if and only if T '+ UR'S is nonsingular, or
equivalently if and iny if T+ TUR™ ST is nonsingular, in which case

(R+STUY '=R'-R!'S(T '+UR'S)" UR" (1.1y
=R '-R'ST(T+TUR!'ST)" ! TUR™!
(1.2)

Formula (1.1) can be useful in instances where R is easy to invert (as would
be the case if, e.g., R were diagonal) or has already been inverted and where

1  This paper was presented at a Conference in Honor of Shayle R. Searle, which
was held on August 9-10, 1996, at Comnell University, Ithaca, NY.
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the dimensions of T (and hence those of T~ '+ UR™'S) are small relative to
those of R. Formula (1.2) calls for more matrix multiplications than formula
(1.1), but does not call for the inversion of T.

As discussed by Henderson and Searle [7], formulae (1.1) and (1.2) have
many applications in statistics. Formulae (1.1) and (1.2) were given by
Woodbury [16], and one or the other of them is often referred to as Woodbury’s
formula. The special case of formula (1.1) or (1.2) where T is the 1 x 1 matrix
(1) is often attributed to Sherman and Morrison {14], [15] and/or to Bartlett [2].
Refer to Henderson and Searle or to Ouellette (1981, Sec. 2.3) for additional
information about the history of formulae (1.1) and (1.2).

In some applications, R and/or T may not be nonsingular (and may not
even be square), in which case there may be a need for formulae for a
generalized inverse of R + STU [that are comparable to formulae (1.1) and (1.2)
for an ordinary inverse], and there may also be a need for a formula that relates
rank(R + STU) to rank(R). Here, generalized inverse means “weak” generalized .
inverse, that is, a generally nonunique matrix that satisfies the first of the Penrose

conditions. And, for any matrix A, the symbol A is used to denote an arbitrary
generalized inverse of A, that is, an arbitrary solution to AA™ A = A. Typically,
a weak generalized inverse of R+ STU is sufficient for statistical applications.

Consider, for example, a statistical application in which data are acquired
and analyzed in two stages. Let y, represent an n, x 1 vector whose elements
are the (real-valued) data points from that first stage, and ¥z an ny; X 1 vector
whose elements are the data points from the second stage. Suppose that y;
is regarded as a random vector that follows the linear statistical model
Yi = X;B+e; (i =1, 2), where X; is an n;xk (known) matrix of rank
1, B is a vector of unknown parameters, e; is an unobservable random vector
with mean 0 and variance-covariance matrix 02Hi, o’ is a known or unknown
positive scalar, and H; is a (known) positive definite matrix. Further, suppose
that e, and e, are uncorrelated; let ‘

Y1 X, H; 0
= X= , H=

and r = rank(X); and take A, and A to be any matrices (with k rows) such
that R (A’)) c R (X)) and R (A)c R (X). [For any matrix A, the row and
column spaces of A are denoted herein by R (A) and C(A), respectively.]
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During the initial (first-stage) analysis, A, B can be estimated unbiasedly
(from YY) by the generalized least squares estimator
Ay (X H7 X)) X’ H;'y,; and during the final (second-stag€) analysis,
A’B can be estimated unbiasedly (from y) by the generalized least Squares
estimator A’ (X’H™'X)" X' H''y. And, the variance-covariance matrices of
these two estimators are o~ A’ (X' H;'X,) A, and A (X H 'X)A,
respectively.

Now, set R=X H;'X,,S=X, T=H;', and U=X, Then,
R+STU=X'H'X [and rank(R)=r, and rank(R+STU)=r], and an

expression for a generalized inverse of X’H ' X in terms of a generalized
inverse of R (and an expression for r in terms of r|) may be of interest. In

particular, if n, is small relative to k, then (since a generalized inverse of R

may be available from the first-stage analysis) such an expression may be useful
for computational purposes. )

The objective in the present paper is to extend Woodbury’s formula to
generalized inverses and to obtain some related results on ranks. Previously,
Meyer ([9], sec. 4), proceeding on a case-by-case basis, obtained an expression
for a generalized inverse of R+ STU (in terms of a generalized inverse of
R) in the special case where m=p= 1 (i.e., where S, T, and U are respectively
of dimensions nx 1, 1x1, and 1 x q) and where T = (1). And, Rao and Mitra
((13], pp. 70-71) indicated that, in the event that R (U)c R(R) or
c(S)c c(R) (and T and T-!+ UR'S are nonsingular), formula (1.1) can be
generalized simply by substituting R™ for R"!. Further, Henderson and Searle
([7), sec. 4), following Harville [6], listed some formulae for generalized
inverses (of R+STU) that are applicable whenever R (STU) c R(R) and
c(STU)c C(R).

Section 2 of the present paper provides a systematic basis for extending-
Woodbury’s-formula and for obtaining related results on ranks. It does so by
establishing that generalized inverses of R+STU can be obtained as
submatrices of the generalized inverses of a certain partitioned matrix and by
relating rank (R + STU) to the rank of that partitioned matrix. In Sections 3
and 4, the results of Section 2 are used in combination with various results
on partitioned matrices 0 devise formulae for generalized inverses of
R + STU and for rank (R + STU). The formulae given in Section 3 are relatively
simple, but are only applicable in special cases; those given in Section 4 are
more complex, but apply without restriction. :
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2. Some Connections between Generalized Inverses and Ranks of Modified
Matrices and those of Partitioned Marrices ‘

Preliminary to establishing (as Theorem 2.5) the main result of this section,
it is convenient to state (in the form of the following theorem) some basic
results on generalized inverses and ranks of Schur complements (in partitioned
matrices).

Theorem 2.1. Let E represent an rx t matrix, F an rx u matrix, V an
§ X t matrix, and W an s x u matrix, and define Q=W-VE-F, Suppose that
R(V)CR(E) and C(F)c c(E). Then, for any generalized inverse

G Gy, (WY
G= of the partitioned matrix , the (uxs) submatrix
Gy Gy | F E
G,, is a generalized inverse of Q. Similarly, for any generalized inverse
H,, H, EF ]
H= of the partitioned matrix , the (uxs) submatrix
H2] H22 V W :
Hy, is a generalized inverse of Q. Further,
A"
rank =rank (E) + rank (Q) 2.1
F E )
EF
rank =rank (E) + rank (Q) 2.2)
VW

The results of Theorem 2.1 are available in the literature. For results (2.1)
and (2.2), refer, for instance, to Marsaglia and Styan ([8], Cor. 19.1) or Carlson
([4], pp. 262). With regard to the other parts of Theorem 2.1 (the parts pertaining
to generalized inverses), it follows from the results of Bhimasankaram (131,

WYV

Theorem 2) that there exists a generalized inverse of - having a
F E |-

generalized inverse of Q in its upper left comer and similarly that there exists

EF
a generalized inverse of having a generalized inverse of Q in its lower
Vw
WYV
right corner. That every generalized inverse of has a generalized
F E

e
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inverse of Q in its upper left cormer and every generalized inverse of

EF
has a generalized inverse of Q in its lower right corner (as claimed

VW
by Theorem 2.1) was established by Mitra ([11], Lemma 6) — refer also to
Balasubramanian, Dey, and Bhimasankaram ([1], Lemma 7). A proof of
Theorem 2.1 is included for completeness. This proof makes use of the following
three well-known (and easily verifiable) lemmas.
Lemma 2.2. Let A represent an r X s matrix. Then, for any rXt matrix
B, C(B)c C(A) if and only if B=AA™B. And, for any uxs matrix C,
R(C) = R(A) if and only if C=CAA.
Lemma 2.3. Let B represent an r X s matrix, and G an s X r matrix. Then,
for any rxr nonsingular matrix A and sxs nonsingular matrix C,G is a
generalized inverse of ABC if and only if G=C"' HA™' for some generalized
inverse H of B.
Lemma 2.4. Let E represent an r X t matrix, and W an s X u matrix. Then,
Gy Gy,
a partitioned matrix G=| - .| (where Gy; is of dimension uxs) is a
Gy G
generalized inverse of the (s+1)X (u+1) block-diagonal partitioned matrix
W o
if and only if WG, W=W (i.e., G, is a generalized inverse of
0 E
W), EG,, E=E (ie.,, Gy, is a generalized inverse of E), WG, E=0, and
EG,, W=0.

Proof (of Theorem 2.1). Observing (in light of Lemma 2.2) that
V-VE E=0, and that F—EE"F =0, we find that

1. -VE" WV I o) (Q o

0 1 F E -EF 1 0 E

Since the pre- or post-multiplication of a matrix by a nonsingular matrix does
not affect its rank, we have that

\\ARY Qo )
rank = rank = rank (E) + rank (Q)
F E 0 E
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Further, it follows from Lemma 2.3 that the matrix
I o Gy G\ (1 —vg Y
—_— E- F l G21 G22 0 l

I 0) (G Gp)(1 VE

—EF1| |G, Gullo 1

_ G“ G12+G“VE-
| Gu+EFG;;  Gyu+E +FG,+G,y, VE +E FG,, VE
Qo ‘
is a generalized inverse of the matrix , implying (in light of Lemma
0 E .

2.4) that G, is a generalized inverse df Q. The validity of result (2.2) and
of the claim that Hy, is a generalized inverse of Q can be established in similar
fashion. ’

Let

R -ST
C =
TU T
Upon applying Theorem 2.1 (withE=T, F=TU, V=—ST, and W = R), we
_obtain the following very useful result.
Gy Gy
Theorem 2.5. For any generalized inverse G = of the matrix
Gy Gp
C, the (g xn) submatnx G,, is a generalized invers¢ of R + STU. Further,

rank (R + STU) = rank (C) —- rank (T) 2.3)

As demonstrated in Sections 3 and 4, Theorem 2.5 provides a very
convenient and very effective vehicle for translating formulae for generalized
inverses and ranks of partitioned matrices into formulae for generalized inverses
of R+ STU and for rank (R + STU).

3. Some Special Cases
Let

Q=T+TURST
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and consider the matrix
R -R STQ TUR™ 3.1

which is the matrix obtained from formula (1.2) by replacing ordinary inverses
with generalized inverses. Under certain conditions, the matrix C (introduced
’ Gy G,
in Section 2) has a generalized inverse G = for which G, equals
Gy G
matrix (3.1). For C to have such a generalized inverse, it is sufficient that
®(TU) ¢ R(R) and C(ST) C C(R) (¢.g. Bhimasankaram [3], Theorem 2).
Thus, it follows from Theorem 25 that if R(TU) ¢ R(R) and
C(ST) c C(R), matrix (3.1) is a generalized inverse of R+STU.

While the conditions R (TU) < R(R) and C(ST) c C(R) are sufficient
for matrix (3.1) to be a generalized inverse of R+ STU, they are not necessary.
After some algebraic manipulation, we find that

(R+STU) (R —R STQ TUR") (R+STU)
= R+STU-S(1-QQ ) TU (1-R'R)
-(I-RR)STI-QQU- (I-RR)STQTU( - RR)
Thus, we have the following theorem.

Theorem 3.1. For matrix (3.1) to be a generalized inverse of R+STU,
it is necessary and sufficient that

SI-QQ)TU(U-RR) + (I-RROSTA-Q QU
+ (I-RR)STQ TU(I-RR)=0 (3.2)

Condition (3.2) is of course satisfied if “.K(TU) c RR) and
C(ST) c C(R). In fact, it is satisfied if RETU) < R(R) and
c(STU) c C(R). To see this, consider the following lemma.

Lemma 3.2. 1t R(STU) c R(R) and C(STU) < C(R), then

(1-QQ)TU(I-R R) =0 (3.3)
(I-RR)STA-Q Q) =0 (3.4)
(1-RR)STQ TU(-R'R) = 0 3.5)

Proof. Let D=STU, and observe that QQ(T+ TUR ST) =
T + TUR™ ST, or equivalently that I-QQ)T=-(1- QQ)TUR ST, and
~ hence that
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(1-QQ)TU = —(I - QQ")TUR'D 3.6) J
It can be shown in similar fashion that
ST(I-Q™ Q) = -~ DR™ ST - Q" Q) G.7)

Further, (T + TUR™ ST)Q™ (T + TUR'ST) = T+ TUR'ST, or equivalently
"TQ"T= T+TUR ST-TUR" STQ T-TQ TUR ST
~TUR STQ” TUR" ST '
implying that
STQ"TU = D+DR™ D - DR STQ™ TU
-STQ"TUR D-DR STQ TUR™ D (3.8)

And, if RD) c RR) and ¢(D) C(R) [in which case D(I - R~ R) = 0 and
(I-RR") D =0}, resuits (3.3)-(3.5) follow from results (3.6)-(3.8).

If R(STU) c R(R) and C(STU) < C(R), then it follows from Lemma 32
that condition (3.2) is satisfied. Thus, as a corollary of Theorem 3.1, we have
the following result, noted previously by Henderson and Searle ([7], sec. 4),

Corollary 3.3. For matrix (3.1) to be a generalized inverse of
R +STU, it is sufficient that R(STU) < R(R) and C(STU) c c(R).

There is an alternative way to use Lemma 3.2 to establish Corollary 3.3.
It follows from Theorem 1 of Bhimasankaram [3] that, for the matrix C to
have a generalized inverse with matrix (3.1) in the upper left corner, it is
sufficient that conditions (3.3)—(3.5) be satisfied. Thus, if R(STU) c KR)
and C(STU) < C(R), then (in light of Lemma 3.2) C has such a generalized
inverse, implying (in light of Theorem 2.5) that matrix (3.1) is a generalized
inverse of R + STU.

Under the conditions of Corollary 3.3, variations on formula (3.1) can be
obtained by rewritng R+STU and R+ (ST)T (TU),R + (ST)Ip U, or
R+ 81, (TU) and by applying formula (3.1) with ST, T", and TU; ST,I,, and
U; or S,1;,, and TU in place of S, T, and U. We find that, in the special case
where R(STU) < R(T) and C(STU) < C(R), each of the following matrices
is a generalized inverse of R + STU:

R® - R™STT (T +T TUR"STT ) T TUR"

R™ - R'ST(IP+UR'ST)'UR'
R® - R"S(,+TUR"S)"TUR" (3.9)

e
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Note that, in the special case where R, T, and T+ TUR ™ ST are nonsingular,
formula (3.9) reduces to formula (1.1). : '

. Now, consider the rank of R+STU. When R (TU) ¢ R(R) and
C(ST) < C(R), it follows from result (2.2) that

rank (C) = rank (R) + rank (Q) (3.10)

More generally, in light of Lemma 3.2, it follows from Corollary 19.1 of
Marsaglia and Styan [8] that equality (3.10) holds when R(STU) c R(R)
and C(STU) c C(R). Thus, as a consequence of Theorem 2.5, we have the
following result.

Theorem 3.4. It R(TU) = R(R) and C(ST) < C(R) or more generally
if R(STU) c R(R) and C(STU) c C(R), then

“rank (R + STU) = rank(R) - [rank (T) —rank (Q)] =~ (3.11)

In connection with Theorem 3.4, note that Q = T (T~ T+ UR ™ ST) and
hence that (regardless of whether the conditions of the theorem are satisfied)
rank(T) — rank(Q) = 0. Note also ‘that equality (3.11) is equivalent to the
equality

rank(R) — rank(R +STU) = rank(T) — rank(Q)

Thus, the difference in rank between T and Q is non-negative and, when
R(STU) = R(R) and’ ¢(STU) < C(R), is the same as the difference in rank
between R and R+ STU.

4. General Case : Some New Formulae

In Section 3, it was found that, in the special case where
R(STU) c R(R) and C(STU) < C(R), condition (3.2) [which is necessary
and sufficient for formula (3.1) to be applicable] is satisfied (without any
restriction on the choice of the generalized inverses R~ and Q ™). However,
aside from that very important special case, the restrictions imposed by condition
(3.2) would appear to be rather severe. Consider, for example, the special case
where m=p=1 (so that § is a column vector and U a row vector and T and
Q are scalars) and where T = (1), S ¢ C(T), and U ¢ R(T). In that special case,
condition (3.2) implies that Q=(0) and Q™ = (=2) (as is easily verified). In
what follows, formulae are obtained for generalized inverses of R+ STU and
for rank(R + STU) that apply without restriction.

Meyer ([10], Theorem 3.1) gave a formula for a generalized inverse of

_ . Gy G2

a partitioned matrix that applies without restriction. Let G =
' Gy G
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represent the generalized inverse of the matrix C (introduced in Section 2)
obtained by applying Meyer’s formula. Further, letting Q = T + TUR ™ ST (as
in Section 3), define Eg=1-RR”, Fp=1-R"R, X= EgST, Y = TUFy,
Ey=I-YY", Fx=1-X"X, Z=Ey QFx, and Q"=FyxZ E,. Then,
assuming that (in applying Meyer’s formula) the generalized inverse of — X
is set equal to - X7, G, equals

R™-R7STQ'TUR™ -R ™ STU-Q'Q)X Ey - Fy Y (I1-QQ*) TUR "
+ FR Y (I-QQ") QX ™ Ey (41)
And, in light of Theorem 2.5, we have the following theorem.

Theorem 4.1. Matrix (4.1) is a generalized inverse of R+ STU.

Note that, like formula (3.1), formula (4.1) calls for the “inversion” of
an n X q matrix and an mx p matrix [R and Z, in the case of formula “4.1); .
R and Q, in the case of formula (3.1)]. And, in addition, formula (4.1) calls
for the “inversion” of the n x p matrix X and the m x q matrix Y. Note also
that if R(TU) < R(R) and C(ST) c C(R), then X=0 and Y =0 (so that
Fx =1 and Ey = I and consequently Q" is an arbitrary generalized inverse
of Q), and formula (3.1) can be obtained as a special case of ‘formula 4.1
by setting X~ = 0 and Y~ = 0. Further, the formula given by Meyer ([9],
Theorem 7) for a generalized inverse of R+ STU, which is for the special
case where § is a column vector, U is a row vector, and T = (1), can be obtained
from formula (4.1).

IfR™, X7, Y™, and Z~ are taken to be reflexive generalized inverses
(of R, X, Y, and Z, respectively), then matrix (4.1) is a reflexive generalized
inverse of R+ STU, as can be shown by applying result (3.26) of Hartwig [5]
to the matrix C.

Now, consider the rank of R+ STU. Marsaglia and Styan ([4], formulae
(8.6) and (8.7)) give two alternative formulae for the rank of a partitioned matrix,
the first of which is also given by Meyer ([10], Theorem 4.1). Upon applying
their formulae (both of which apply without restriction) to the matrix C and
substituting the resultant expressions into expression (2.3), we obtain the
following theorem and corollary. '

Theorem 4.2.
rank (R+STU) = rank (R) + rank(X) + rank (Y) + rank (Z) - rank (T)
rank (R+ STU) = rank (R) - [rank (T) - rank(Q)] + rank(A)

+rank (B) + rank [((I - AA™) XQ " Y(I - B~ B)] “4.2)
where A=X(I- Q™ Q) and B=(I - QQ") Y -
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Corollary 4.3.
rank(R + STU) = rank(R) — [rank(T) — rank (Q)] 4.3)

with equality holding if and only if X(I1-Q~Q)=0, 1-QQ)Y=0, and
XQY=0. :

Note that, for expression (4.2) to reduce to expression (3.11) {and for
inequality (4.3) to hold as an equality], it is sufficient that R(STU) c R(R)

and C(STU) c C(R). More generally, expression (3.11) is a lower bound for
rank (R + STU).
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